Mass transport modelling from GRACE/GRACE-FO data


Job description

The continued observation of the temporal changes of the Earth’s gravity field is essential for understanding mass transport, caused by processes in the oceans and atmosphere, by melting ice caps and glaciers, by large-scale ground water use, among others. Mass transport is an essential climate variable, and its monitoring is required for understanding climate change. It is also crucial for monitoring hydrological processes at global and regional scales, thereby providing information for water security relevant for agriculture and drink water supply of billions of people worldwide. Space-borne gravimetry, notably in the form of the Gravity Recovery And Climate Experiment (GRACE), GRACE Follow-On missions, has provided observations covering two decades, but their full information content remains underutilized. Without fully exploiting the spatial and temporal resolution of gravimetric data, the ability to separate the underlying geophysical processes is not possible, crippling our understanding of the effects of climate change. 

 This research aims at providing novel mass transport products derived from space-borne gravimetric data coming from past, current, and future missions. This is achieved by innovative methodology, namely by uniquely constraining the data from these missions to geophysical models, thereby combining the strength of the underlying physical knowledge contained in such models and maximising the spatiotemporal resolution of the satellite on-orbit observations. Auxiliary information, such as precipitation records or altimetry data, will establish a suitable temporal evolution, and topography and surface properties will predict a realistic spatial mass distribution. 

The successful candidate will transform the application of gravimetric data in the various geophysical domains by providing mass change estimates with unprecedented spatiotemporal resolution at specific geographical locations and focusing on particular geophysical processes. 

The successful candidate will be responsible for pre-processing the GRACE data, building the mass transport models at selected geographical regions, and validating and improving their parameterisation.

The successful candidate will also be involved in education as MSc student co-supervisor and/or as project coach.     


To be considered for the position, the candidate must have MSc degree in a relevant field: Geodesy, Physical Geography (notably Hydrology and Glaciology), Geophysics, Aerospace Engineering, Computer Science or Applied Mathematics.

We are particularly looking for candidates with:

  • knowledge in computational geosciences and stochastic modelling,
  • experience in effective software development and satellite data processing,
  • demonstrated ability to conduct high-quality research,
  • aptitude to communicate clearly and concisely,
  • independence and eager to learn new disciplines.

Please make sure you address all the points above in your cover letter; if you do not meet one or more criteria, explain how you plan to mitigate that gap. Please feel free to include a research statement, where you disclose your own research plans, ambitions and how they fit with the proposed research.

Conditions of employment

Doctoral candidates will be offered a 4-year period of employment in principle, but in the form of 2 employment contracts. An initial 1,5 year contract with an official go/no go progress assessment within 15 months. Followed by an additional contract for the remaining 2,5 years assuming everything goes well and performance requirements are met.

Salary and benefits are in accordance with the Collective Labour Agreement for Dutch Universities, increasing from € 2443 per month in the first year to € 3122 in the fourth year. As a PhD candidate you will be enrolled in the TU Delft Graduate School. The TU Delft Graduate School provides an inspiring research environment with an excellent team of supervisors, academic staff and a mentor. The Doctoral Education Programme is aimed at developing your transferable, discipline-related and research skills.

The TU Delft offers a customisable compensation package, discounts on health insurance and sport memberships, and a monthly work costs contribution. Flexible work schedules can be arranged. For international applicants we offer the Coming to Delft Service and Partner Career Advice to assist you with your relocation.

TU Delft

Delft University of Technology is built on strong foundations. As creators of the world-famous Dutch waterworks and pioneers in biotech, TU Delft is a top international university combining science, engineering and design. It delivers world class results in education, research and innovation to address challenges in the areas of energy, climate, mobility, health and digital society. For generations, our engineers have proven to be entrepreneurial problem-solvers, both in business and in a social context. At TU Delft we embrace diversity and aim to be as inclusive as possible (see our Code of Conduct). Together, we imagine, invent and create solutions using technology to have a positive impact on a global scale.

Challenge. Change. Impact! 

Faculty of Aerospace Engineering

The Faculty of Aerospace Engineering at Delft University of Technology is one of the world’s most highly ranked (and most comprehensive) research, education and innovation communities devoted entirely to aerospace engineering. More than 200 science staff, around 250 PhD candidates and over 2,700 BSc and MSc students apply aerospace engineering disciplines to address the global societal challenges that threaten us today, climate change without doubt being the most important. Our focal subjects: sustainable aerospace, big data and artificial intelligence, bio-inspired engineering and smart instruments and systems. Working at the faculty means working together. With partners in other faculties, knowledge institutes, governments and industry, both aerospace and non-aerospace. Working in field labs and innovation hubs on our university campus and beyond.

Click here to go to the website of the Faculty of Aerospace Engineering.

Research group

The Astrodynamics and Space missions Chair (AS) of the Faculty of Aerospace Engineering is specialized in the use of space techniques to advance satellite orbit dynamics and geodesy as scientific disciplines, and to contribute to advanced satellite orbit computations, gravity field determination, modern tracking concepts, and geodesy to global change studies, geodynamics, oceanography, and geophysics. Precise orbit determination and in conjunction conservative and non-conservative force modelling belong to the key research areas of AS. In addition, AS has been involved for a long time in altimeter calibration and validation activities and the construction of the renowned Radar Altimeter Database System RADS, which enjoys a large science user-community.

Application procedure

For information about this vacancy you can contact Joao da Teixeira de Encarnacao, Assistant Professor of Astrodynamics & Space Missions at telephone number 31 (0) 15 2781865 or per email j.g.dateixeiradeencarnacao@tudelft.nl

For information about the selection procedure, please contact supoort Space Engineering, secr-SpE-LR@tudelft.nl

A pre-employment screening can be part of the application procedure.

The applications will be reviewed as soon as they are received, therefore you are invited to submit your application as soon as possible but no later than September 5th, 2022.


访问项目链接 招生网站
欧陆, 荷兰 所在地点
带薪项目 项目类别
截止日期 2022-09-05




邮箱: info@tudelft.nl 电话: +31 (0)15 27 89111